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Purpose. To investigate dissolution data variability and its origins.
Methods. The Weibull function with four parameters, t, (dissolution
lag-time), K (the rate parameter), 8 (the shape parameter) and D (the
fraction dissolved as t = ), is used to describe the dissolution curve.
The variance of the dissolution data is expressed in terms of these
parameters and their individual variances o, ok, 0, and o}. These
four variances originate from variable physical properties of the dosage
units and from a variable dissolution environment. Therefore, dissolu-
tion data variability depends on both, the functional form of the curve
and on the variance of the physical conditions. The use of this method
enables the elucidation of the sources of dissolution data variability.
Results. In the case of a sigmoidal dissolution curve (§ > 1), data
variance is zero as dissolution begins (following dissolution lag-time).
This initial variance diverges when the dissolution curve is non-sigmoi-
dal (with B < 1) but assumes a finite value, proportional to the dissolu-
tion lag-time variance ((rﬁ)) when the data fits a regular first order rate
curve (3 = 1). Following a long dissolution time, data variance attains
a constant value equal to the dissolution extent variance, 3. When
the dissolution curve is sigmoidal and the variability related to the
dissolution extent is sufficiently small (op/D << 1), a maximum in
the variance is expected at some intermediate time point (corresponding
to the curve inflection point, when the main source of variability is
dissolution lag-time t;, or around t = 1/K + t,, when the main sources
of variability are the rate parameter K or the shape parameter 3). When
the curve is sigmoidal (B > 1) and the main source of varability
relates to the dissolution extent, the overall variance grows with time
all the way to the plateau of the dissolution curve. With a non-sigmoidal
dissolution curve (§ = 1), data variability decreases with time soon
after dissolution begins. In that case, if the main source of variability
is the dissolution lag-time (1), the variance decreases all the way to
the plateau of the dissolution curve. If the dissolution extent, D, is the
main source of variability, a minimum in the variance is expected at
some intermediate time point. The dissolution relative variance, on the
other hand, diverges as dissolution begins and decreases with time at
least until 63% of the drug is released, irrespective to the Weibull
parameter values. Later, it may decrease or increase, attaining a fixed
value (g§/D?) at the plateau of the dissolution curve.

Conclusions. The particular time dependence of dissolution data vari-
ance is well defined in terms of the Weibull shape parameters and
their individual variances. Dissolution data variability may decrease
or increase with time along the curve. It may attain a maximum or a
minimum value at some intermediate time point. It may converge or
diverge as dissolution begins. When the dissolution data is well fitted
to the Weibull function, the sources of data variability (in terms of the
Weibull parameters) may be elucidated. The variability of dissolution
data originates from physical sources but is also dependent on the
functional form of the curve.

KEY WORDS: dissolution variability; Weibull function.

INTRODUCTION

Variability of dissolution data originates from non-homog-
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temporal variability in the dissolution vessel environment, to
which these units are exposed. This variability of the dissolution
environment is affected by many factors; two of the most com-
mon being mechanical instabilities in the agitation system
(vibration effects) and improper deaeration of the dissolution
medium. Other sources of variability are: irregularly shaped
vessels, careless filtering, inaccurately prepared buffers as well
as wear of the paddles and baskets (1). In addition, the orienta-
tion of the tablet on the bottom of the vessel may result in
variable hydrodynamic conditions which, in turn, may lead
to nonreproducible results (2). The formation of a cone of
disintegrated material under the paddle may lead to instability
of the dissolving system and, hence, to variable dissolution data
(3). It was also demonstrated that a certain degree of turbulence
always exists in the boundary layer of a dissolving solid (4).

Wagner (5) cautioned that the inherent variability in the
dissolution method should be less than the inherent variability
that can be tolerated in the product. Calibration of the dissolu-
tion apparatus by the use of calibrator tablets and calibration
criteria is intended for this purpose. However, a calibrated
dissolution apparatus may, still, produce variable data following
the use of a test product which is more sensitive to the dissolu-
tion conditions than the standard calibrator tablets.

The purpose of this work is to investigate dissolution data
variability and its origins. An assessment of the time dependence
of the variance may be important in the determination of the
dissolution specifications. Furthermore, prior detection of a
divergence in the variance is important since the determination
of a mean value (for the percent dissolved) is impossible at the
time interval where divergence is expected.

It is also important to locate a maximum or a minimum
in the variance as a function of time. An evaluation of dissolu-
tion data should be avoided in the vicinity of the time where
a maximum in the variance is expected while, on the other
hand, evaluation of dissolution data is preferable in the vicinity
of time correlating to a minimum value of the variance. The
attribution of dissolution data variability to specific physical
properties of the dosage units is helpful in the search for an
improved production process which may lead to a better unifor-
mity among the dosage units. All of these issues are addressed
in the present work, where the “absolute” variance (or simply
“the variance”) and the relative variance are discussed
separately.

It must be pointed out that dissolution apparatus (environ-
mental) variability cannot be distinguished from product vari-
ability by mathematical analysis alone. This goal may be
reached however, by the combination of mathematical analysis
and dissolution experiments, when the effects of both dissolu-
tion conditions and product formulation, are investigated
separately.

THE VARIANCE

The Weibull function, F(t), is commonly used for the
approximation of dissolution data (6):

enous physical characteristics of the dosage units and from F(t) = D( — e D
where
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D is the dose fraction dissolved as t = o, t; is the dissolution
lag-time, K is a first order rate constant (the rate parameter)
and B is the shape parameter. When B = 1, K is identical to
the dissolution rate constant. However, in the general case when
B # 1, K cannot be simply related to the dissolution rate. As
a matter of fact, K may present a pseudo (time dependent) first
order rate constant even though dissolution is a true first order
process (see App. A).

When the four parameters of the Weibull function, ty, K,
B and D, are independent of each other, the variance of F(t),
a2, can be expressed as a linear combination of variances related
to each parameter (7):

2
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Differentiation of F(t) with respect to t and with respect to each
of the four parameters (App B) yields:

oF

— —xB B—1
= = KDe™’BX (3)
ok Ko o2
o = [FOP > [K'§ + =z InX BZ] + FZ(t)D—‘Q @)
where
1oy = OF
F =5

It is instructive to examine ¢ following very long or very short
dissolution times.
Following a long dissolution time, as X — o:

lim F(t) =D )]
X —00
lim F'(t) = 0 (6)
X—o=

Then, by eq. 3
lim o2 = o} €))
X—mw

It may be stated that following a very long dissolution time,
the variance of F is equal to variance of D (the dissolution extent
variance, which may originate from a poor content uniformity of
the dosage units).
Following a very short dissolution time, as X — 0:
lim F'(t) = 11m DKB(1 — XB)XP~! = lim DKBXPF™! (8)

X—0 X-0

lim F(t) = 11m DX® 9

X—0
By comparing eq. 8 and eq. 9 it follows that:
F'(H)X

lim F(t) = 1i 10
xl—IEJ © xl—r>r(1J Kp (10)

letting X approach zero in eq. 4, provides:
lim ¢? = hm [F'())* o an

X—0
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where eq. 10 has been used. Introducing eq. 8 into eq. 11 yields:

)l(l_% DZKZBZ XZB 2 2 (12)

lim o?
X-0
It follows that the variance of F(t) at the very short dissolution
time intervals is proportional to the lag-time variance.
By eq. 12:

limg?=0 when B > 1 (13)
X-0
lim g% = o when 8 < 1 (o, # 0) (14)
X0
lim o2 = D*K?07, when B = 1 (15)
X—0

It should be noted that F acquires an inflection point (a
sigmoid shape) whenever 3 > 1. This can be shown by differ-
entiating F(t) twice with respect to t:

2
F"(t) — Q —

Z =B 1- BXP) DBKZ**XP~2  (16)
or, by the use of eq. 3:
F() =@ -1-BXHFOK X! Y
an inflection point in F is defined by the condition:
B—-1-BXE=0 (18)

which may hold only when § > 1.
The time dependence of o2 is examined by differentiation
of o? with respect to t (App. C):

3(0?) 2(F PX o Ok
== 7 — 4+ -1 - B
pr B(L = X¥) 15 + (B — 1 — BX?)
2 o2 o
; o + (B(1 — XB) In?X + InX} Bz] +FF;  (19)
In the limit as X approaches zero (§ # 1):
GO 2(F")2X
lim — = lim -1
xl_rf(l) at X—0 [ ® ) X2 010
o
+ 2F'F D2] (20)

where only the leading terms in eq. 19 have been left (assuming

B # 1)
By the use of eq. 10 in eq. 20, we get:

0D _ e B DK
i 257 = 2 B 5

X

Keeping only the leading term in eq. 21 and using expression
8 for F', provides:
- 202K 3% 28~3 42
hir(l)Z(B DD*B*K*X**’gy, when B # 1
(22)

It follows that the time derivative of the variance of F at
very short time intervals is proportional to the lag-time variance.
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From eq. 22, when. g, # 0:

oY) _

lim —o when B < 1 23)
X-0 Ot
2

T G when 1 <B <15 (24)
X-0 Ot
2

lim G D*B?K%7 ~ when B = 1.5 (25)
X-0 Ot
2

lim 290 = 1 when B > 1.5 26)
X-0 Ot
By App. D
2

)l(i_rﬁn) Q%(Tt__) = —2D*B’K%;, when B =1 2N

To summarize the implementation of eqs. 1315 and 23-27 for
the short time variability of dissolution data:

When dissolution data fits a Weibull function with an
inflection point ( > 1), data variability is zero at ty and grows
with t (o, # 0) for short time intervals.

When dissolution data fits a Weibull function without an
inflection point (8 = 1) two cases should be distinguished:

For B < 1, the variability of the data diverges at t,
(o, # 0) and decreases sharply with t in the vicinity of this
time point.

For B = 1 (a regular first order dissolution curve) the
variance of the data assumes a finite value at t, (proportional
to (rtzo). The variance decreases with t, close to t;.

Eq. 19 at X = 1 yields:

6(0‘2) Ny 2 , (’ZD
—_— e _— + J—
[ at ]le [ 2(F')*Koi, + 2F FD2

= 2KDe™'B[~K*De~'Bo?

x=1

+ (1 — e HepD™] 28)
When K?D?Baz/[(e — 1)oh] > 1, then:
3(?)
[ P :IX:I <0 29)

Eq. 19 when X << 1, (see “Discussion and Conclusions™)
yields:

[m] >0 when g > 1 30)
x<<1

Jt

Therefore (assuming continuity of the derivative with respect
to t), when B > 1 and K?’D?Bai/[(e — 1)aB] > 1, there is a
time point t; corresponding to value X = X, (X; < 1) such that:

[%] =0 : B>1 KDPoy/ll - op) > I
X

€1y

which corresponds to a maximum value for o2,

In other words: for B > 1 (a sigmoid shaped curve) the
variability of dissolution data assumes a maximum value at X;
(<1) if K2D*Boy/[(e — DoB) > 1.
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If K’D*Bo/[(e — 1)op] < 1, maximum value for o2 is
attained at © > X > 1 (see “Discussion and Conclusions”).

THE RELATIVE VARIANCE

Consider the relative variance ¢*/F%. Applying egs. 4 and
1 at the limit as X approaches zero, provides:

2
. T ) _
lim = = lim K*R*X %0}
X0 X—0

(32)

This expression diverges in the limit as X approaches zero,
irrespective of the value of B (provided that o, # 0).
Following a very long dissolution time:

. o2 _oh
= &

The derivative of the relative variance with respect to t yields
(App. E):

8 (6?\  2(F' )X F'X] o%
2 (5) = 25 {ao o - 2

F'x) Ko,
+AB -1 - pXP - =

F'X o}
+ - XPIn?X — InX — = In’X — | (34
{B(l )X n FK n }Bz] 34
Consider eq. 34 in the limit as X approaches zero.
By the use of egs. 1 and 3:

. FX
lim == = li 1 — X8 =
lim <o = lim B( )=B

(35)

Letting X approach zero, in eq. 34, while keeping only the
leading terms, provides:

. d ("2 1 _ 2p3v—3.2
i 2{F) - m - o
were eq. 35 has been used. Hence:
.8 fo?
)1(1n(1);3_£ ﬁ = - (()'[0 * 0) (37)
—

The use of expression 3 for F'(t) in eq. 34, while letting X —

o, leads to:
.8 o\
By the use of egs. 1 and 3:
FX _ Bl —e™-XP
—_— B ——  e——— O
e RIS (39
It can be proven (App. F) that:
l—e™-XP<0 for 0<X<I (40)
It is also true that:
0<1—-e™<1whenX>0 (41)
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and
XB = when X = 1 (42)
Hence:
l-e® - xXP<OwhenX =1 (43)
Combining eq. (40) and (43):
1 —e>® — XP < 0when X >0 (44)
By egs. 41, 44 and 39:
B(l—XB)—EF—KE<OwhenX>O 45)

This means that the o% and o, terms in eq. 34 are negative
irrespective of the X value.
The o} terms may be written as:

FX 1 of
1 - X8 — 2 + — | X 28
[B( XD~k lnX] In°X 52

When X < 1, In X is negative and expression 46 assumes a
negative value.

When X > e and B > 1, 1/InX is smaller than 1 while
the absolute value of expression 39 is larger than 1, therefore
expression 46 is negative (but has a very small absolute value).
When X is close to unity, 1/InX becomes a dominant term in
expression 46 and the expression is positive. However, under
this condition (X = +1) the (positive) oj term is negligible
with respect to the (negative) g% and of, terms.

Therefore, under these conditions, eq. 34 assumes a nega-
tive value. On the other hand, when 1 < X < e (X & 1)
irrespective of the B value, expression 46 may attain a positive
non-negligible values. For Bg < 1, this statement is true also
when X > e. If, in addition, o/ >> {ok/K, Koy}, a positive
value for eq. 34 may be observed. Under these conditions the
relative variance is increasing with t.

(46)

DISCUSSION AND CONCLUSIONS
By egs. I, 3 and 4:

2 2 K302 2
L= [.%xﬁ)z[(—IE +—2 + In%X %]

CY))

Hence, the dimensionless quality o%/D? is a function of five
dimensionless constants: B, ox/K, Koy, 0a/B, op/D and one
dimensionless variable: X. These dimensionless parameters are
used for data presentation in the relevant figures of this work.

Eq. 4 enables an estimation of each of the Weibull parame-
ter variances. By a best fit of the mean dissolution data to the
Weibull function (eq. 1), the four parameters may be estimated.
These values are then introduced into eq. 4. Next, eq. 4 is fitted
to the experimental variance in F (as a function of time), using
Oy, Oy, Op and op as the fitting variables. This procedure is
demonstrated in Figs. la and 1b using the data relating to
particular entero-coated tablets.

As dissolution begins (t = tp), dissolution data variability
originates from the lag-time variance o (eq. 12), whereas,
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110
1001 a

% Dissolved
8

best fit

0 20 40 60 8O 100 120 140
Minutes

best fit

0 20 40 60 80 100 120 140
Minutes

Fig. 1. (a) A best fit of eq. | to mean dissolution data of an entero-
coated tablet. The fit was assessed by the use of MINSQ, a minimum
squares nonlinear fitting procedure (MicroMath, Scientific Software,
Salt Lake City Utah). The best-fitted values are: D = 100.65%, B =
1.3891 K = 0.044346 min~! and t; = 17.694 min (b) A best fit of
€q. 4 to the experimental standard deviation presented in fig. la. The
fit was assessed by the use of the MINSQ fitting procedure. The best
values for t, D, B and K, obtained by fitting the mean dissolution data
to eq. 1 (see fig. la), were used as constants. oy, o', 03 and op were
used as the fitting variables. The best-fitted values are: o = 0.002126
min~!, ¢, = 3.7209 min, o5 = 0.2852, op = 3.583%.

Standard Deviation (% Dissolved)

after a long period of dissolution, variability originates from
the dissolution extent variance o (eq. 7).

Following the dissolution lag-time, a divergence in the
variability may be observed only with non-sigmoidal dissolu-
tion curves (B < 1) (eq. 14). However, significant changes in
o? are expected for sigmoidal curves as dissolution begins,
when 1 < 3 < L5, o, # 0 (eq. 24).

Consider the variability change as a function of time (eq.
19): the signs of the gk and the g terms are time dependent:
they are positive for low values of X (or low values of t) and
negative for high values of X (or high values of t).

The above is also true for the o, term when B > 1. When
B < 1 this term is negative for any value of X (or t). The op
term, on the other hand, is positive for any X value (F' and
F assume only positive values). Therefore, with a sigmoidal
dissolution curve (B > 1), the variability increases with t as
dissolution begins (t = tg).

With a sigmoidal dissolution curve (§ > 1) and when the
variability related to the dissolution extent is sufficiently small
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(op/D << 1), a maximum in the overall variance may be
observed at some intermediate time point. Otherwise, the vari-
ability may grow all the way up to the plateau of the dissolution
curve. Typically, a maximum in the variance is observed around
the time corresponding to the inflection point of the curve, or
around t = I/K + t; (X = 1). In order to understand this,
consider eq. 28: when both op/D and Ko, are null, a maximum
in the variance is observed at X = 1. If both terms are suffi-
ciently small a maximum in the variance occurs around X = 1.

Therefore, with a sigmoidal dissolution profile (§ > 1),
a maximum in the variance is expected around t = I/K + t,
when both the dissolution extent variability and the dissolution
lag-time variability are low enough such that {op/D, Koy} <<
1 (Fig. 2).

On the other hand, consider the variance at the inflection
point. Using eq. 18 in eq. 19 provides

ey | _ 2FX [ok o
[ o j|lp == l:K2+(ln2X+lnX)[32

(48)

where i.p. stands for “inflection point”. F, F’, and X in eq. 47
should be evaluated at the time corresponding to the inflection
point. Eq. 48 is independent of o If the variability in the data
originates mainly from lag-time variability (o)), as in the case
of entero-coated tablets, eq. 28 has a negative sign (meaning
a negative slope for a? at X = 1) while all terms in eq. 48 are
relatively small. This leads to a maximum in the variance around
the time corresponding to the inflection point in the curve.
Therefore, with a sigmoidal dissolution profile, a maximum in
the overall variance is expected around the inflection point
when the variabilities related to the dissolution extent and to
the rate and shape parameters are low enough such that {op/
D, ox/K, 0/B} << 1, while the dissolution lag-time vartability
is high enough such that Ko, is not much smaller than 1 (Fig. 3).

-
a
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Variance x 10>/ D?

X[=K(t-t.)]
Fig. 2. With a sigmoidal dissolution profile (B > 1), a maximum in
the variance is expected around t = 1/K + t, (X = 1), when both the
dissolution extent variability and dissolution lag-time variability are
low enough such that op/D << 1 and Ko, << |. As an example,
a?/D? was evaluated by eq. 47 using: B = 1.2, op/D = 0.01, o/B =
0.0833, ox/K = 0.1 and Ko, = 0.01.
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Fig. 3. With a sigmoidal dissolution profile (B > 1), a maximum in the
variance is expected around the inflection point when the variabilities
related to the dissolution extent and to the rate and shape parameters
are low enough, such that: {op/D, ox/K, op/B}] << 1, while the
dissolution lag-time variability is high enough such that Ko, is not
much smaller than 1. This, for instance, would be the case in a system
where the main source of variability is dissolution lag-time, where
variabilities from all other sonices are extremely low, where the K
value is not too low and where the dissolution curve is sigmoidal. As
an example, o%/D? has been evaluated by eq. 47 using: B = 1.2, op/
D = 0.01, g4/ = 0.0833, o/K = 0.1 and Ko, = 0.5. For B = 1.2,
an inflection point is defined at X = 0.2246. The maximum variance
is observe exactly at that X value.

Using eq. 19, when op/D is relatively large, the variance
time derivative is positive for any value of X. Hence with a
sigmoidal dissolution profile (8 > 1) and when the main source
of variability is related to the dissolution extent, the overall
variance grows all the way to the plateau (fig. 4). When the
main sources of variability are related to both the dissolution
extent and the dissolution lag-time (with § > 1), and intermedi-
ate situation between the ones presented in Fig. 3 and in Fig.
4 is observed (Fig. 5).

Variance / D?

0 L e S e R e —

0 1 2 3 4 5 6
X[=K(t-to)]
Fig. 4. With a sigmoidal dissolution profile (8 > 1) and when the
main source of variability is related to the dissolution extent, the overall
variance grows all the way to the plateau. For example, %/D? has been
evaluated by eq. 47 using: B = 1.2, op/D = 0.5, o/ = 0.0833, o/
K = 0.1 and Ko, = 0.01.
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Fig. 5. With a sigmoidal dissolution profile (8 > 1) and when the
main sources of variability are related to the dissolution extent and to
the dissolution lag-time, an intermediate situation between the ones
presented in figs. 3 and 4 is observed. For example, ¢%/D? has been
evaluated by eq. 47 using 8 = 1.2, op/D = 0.5, ap/B = 0.0833, o/
K = 0.1 and Ko, = 0.6.

With a non-sigmoidal dissolution profile (8 = 1) and when
the variability related to the dissolution lag-time is non-zero (
oy, #* 0), the overall variance attains a maximum value as
dissolution begins (t = ty). Under these conditions, if dissolution
lag-time variability is large enough while the variabilities related
to all other sources are small enough such that Ko, >> {oy/
K, ogB, op/D}, then, the overall variance decreases all the way
to the plateau (Fig. 6). If, instead, the variabilities related to
both, the dissolution lag-time and the dissolution extent are
large enough while the variabilities related to the two other

0.26
0.24] I
0.22]

0.2 1
0.18
0.16/
0.14]
0.12]

0.1

0.08]
0.061
0.04
('1.02j

0

Variance / D?

p=08
o 1 2 3 4 3 8
X[=K(t-t))]

Fig. 6. With a non-sigmoidal dissolution profile (3 = 1) and when
the variability related to dissolution lag-time in non-zero (o, # 0), the
overall variance attains a maximum value as dissolution begins at t =
ty (X = 0). Under these conditions, if dissolution lag-time variability
is large enough while the variabilities related to other sources are small
enough such that Koy, >> {Bx/K, a4/B, o/D}, then the overall vari-
ance decreases all the way to the plateau. As an example, 0*/D? has
been evaluated by eq. 47 using: B = 0.8 (or ' = 1), op/D = 0.1, g/
8 = 0.125, ox/K = 0.1, and Ko, = 0.5.
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sources are small enough such that {Koy, op/D} >> {oy/K,
og/B}, then the overall variance reaches a minimum before it
grows with t (Fig. 7).

The Weibull function does not originate from a physical
model. Therefore, two of the function parameters (K and B)
cannot be simply related to some definite physical properties
of the dosage units or the dissolution set. However, a functional
form, similar to the Weibull function, may be derived by use
of a modelistic approach (to be presented in a future publica-
tion). With such an approach, the physical interpretation of the
functional parameters is more straightforward.

It may be concluded that although variability of dissolution
data originates from the variability of some physical properties
of the dosage units and from a variable dissolution environment,
this data variability is also dependent on the functional form
of the dissolution curve. Divergence of the data immediately
following dissolution lag-time is not necessarily a result of a
poor formulation: for a non-sigmoidal dissolution curve
(excluding the simple first order case when 3 = 1) and for a
sigmoidal curve with 1 < B < 1.5, this divergence is a property
of the function. Data variance may decrease or increase with
time along the curve; it may attain a maximum or a minimum
value at some intermediate time point along the curve.
Addressing the relative variability: it has been proven that
irrespective of the curve shape (f value), the relative variance
diverges as dissolution begins at t = t, when o, # 0. It
decreases as t increases at leastup tot = 1/K + to (X = 1).
Using this value of X = 1 in eq. 1, leads to the conclusion that
the relative variance must decrease with t until (at least) 63%
of the drug is released, independently of the curve shape. Fol-
lowing this time point, if the shape parameter variability is
much larger than both the rate parameter and the dissolution
lag-time variabilities such that /B >> {ox/K, Koy}, the

(o]
(=)
S—
L
o
=
=
1
=
~
>
0.05]
1
]
o+
o 1 2 3 4 s 6
X[=K(t-t)]

Fig. 7. With a non-sigmoidal dissolution profile (B = 1) and when
the variability related to the dissolution lag-time is non-zero (o, #
0), the overall variance attains a maximum value as dissolution begins
att = ty (X = 0). Under these conditions, if the variabilities related
to both dissolution lag-time and to dissolution extent are large enough
while the variabilities related to the two other sources are small enough
such that {Kay, op/D} >> {ox/K, ag/B}, then, the overall variability
reaches a minimum before it grows with t (or X). For example, ¢%/D?
has been evaluated by eq. 47 using: B = 0.8 (or 8 = 1), op/D = 0.5,
ag/p = 0.125, o/K = 0.1 and Koy, = 0.5.
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Fig. 8. Irrespective of the curve shape (B value) the relative variance
(0*/F?) diverges as dissolution begins and decreases as t increases at
leastuptot = 1/K + t5 (X = 1). This means a decrease in the relative
variance until (at least) 63% of the drug is related (eq. 1). Later, if the
shape parameter variability is much larger than both the rate parameter
and the dissolution lag-time variabilities such that o/ >> (oW/K,
Ko,n}, the relative variance may increase with t. Otherwise, it decreases
with t up to the plateau of the dissolution curve. At the plateau, the
relative variance attains a fixed value equal to the relative dissolution
extent variance (o3/D?). Two sets of parameter values have been used
in eqs. 1 and 4 to demonstrate the two cases discussed above: a. § =
1.2, op/D = 0.1, g/ = 0.666, ox/K = 0.001, Ko, = 0.001 b. B =
1.2, op/D = 0.1, op/B = 0.0083, o/K = 0.2, Ko, = 0.2.

relative variance may increase with t. Otherwise, it decreases
all the way to the plateau of the dissolution curve (Fig. 8). At
the plateau the relative variance attains a fixed value equal to
the relative dissolution extent variance (o03/D?).

APPENDIX A

Suppose that the drug transfer from the solid dosage unit
to the sampling probe can be described by two consecutive
first order processes. For instance, a first order dissolution
process followed by a first order diffusion process. Let K, and
K, be the appropriate first order rate constants.

The dose fraction F detected at the probe is given by:

K, K K,
—_— e Kt —Kat 1
1 e KK, e (1A)

=D(1 -
F < KZ—K

where D is the dose fraction detected at the probe as t — .
This equation presents a sigmoidal curve with an inflection
point at

t = ln(Kz/Kl)/(Kz - Kl)

F may be approximated by the Weibull function. Use of eq. |
in eq. 1A leads to:

\ 1B
= l — __ISL__ ~Kit _ _ﬁ_ —Kat
K " { In (Kz _K, e KoK e (2A)

where, for simplicity, t; = 0 was assumed.
By the use of a specific physical model, it is therefore
demonstrated that the Weibull rate constant (K) may be a com-
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plex function of a few physical rate constants. Hence, in the
general case, K may not be a function of the dissolution rate
constant alone. Moreover, it is demonstrated that the Weibull
K parameter may be time-dependent (K may not be a real
constant). If this time dependency is weak enough, K may be
considered a pseudo-constant. In that case, a particular curve
defined by the general eq. 1A may be well fitted to the Wei-
bull curve.

Example: K; = 0.6, K, = 0.4, D = 1 were used in eq.
1A. The Weibull function (with D = 1, t; = 0) was best
fitted to the generated data using MINSQ, a minimum squares
nonlinear fitting procedure (MicroMath Scientific Software,
Salt Lake City, Utah). The result is an excellent fit to the data
(r> = 0.9997), indicating that K and { are only weakly depen-
dent on t. The best fitted values for K and 3 are 0.2193 and
1.5270, respectively.

It is clear that the best-fitted Weibull rate constant K value
is far from either K, (the dissolution rate constant) or K, (the
diffusion rate constant) included in the original physical model.

APPENDIX B

Differentiation of F(t) (eq. 1) with respect to the four
Weibull parameters yields:

gg = De™ BXP(t — 1) (1B)
g—z = —De ™ BXP~'K (2B)
gg = —De™* XPInX (3B)
g—g =1—-e* (4B)
Using eq. 3 in eqs. 1B-3B produces:
(;ig = % F'(t) (5B)
% = ~F'(t) (6B)
5B FO (7B)
By the use of eq. | in eq. 4B, we have:

Introducing the above four derivations into eq. 2 provides eq. 4.

APPENDIX C
Differentiate eq. 4 with respect to t:
d(a? e | X2 X2n?X
——(at ) = 2F'(t)F (t){ﬁ ox + O'tzo + _BZ—KZ_ 0'%3]

2
+ [F'OP [% + (2XKIn?X + 2KXInX) Bfl‘zz]

2
+ 2F'(t)F(t)ED‘§ (10)
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Using eq. 17 in eq. 1C provides:

ao? _ 2(F)K Xok XX op
at = X (B BX ) K2 KZ O + K? BZ
L26EX R o} b
+ [—
X [ (lnX+lnX)I3 +2FFD2
(20
By rearranging eq. 2C, we have:
2
a(0?) _ 2(F')X o 7% Koo,
—_— — p— —_— +
ot K (B 1 BX ) K2 X2 + In X B2
L2EYX [ @ X o} ah
+ +1 + —=
< |2 T X+ nX) = 82 JFF= D2
(30

Combining terms in eq. 3C leads to eq. 19
APPENDIX D
Eq. 19 yields the following when B = 1:

[9@] _2E)PX [(1 %% K
B=1

at K? X

2
+ {(1 = X)X + InX) 0'%] + 2F'F¥ (ID)

where F and F’ are evaluated for § = 1.
Eq. 1D is simplified to the following in the limit as X — 0:

2 o
)l(l_)mo [ %L:l = ’l(l_rg 2F' ( Fﬁ - F’Kaﬁ)) (2D)
Egs. 8 and 9 yield
)l(i‘%[F'(t)]azn = DBK (3D)
}(i_r)l(])[F(t)]B=l =0 (4D)

The use of eqs. 3D and 4D in eq. 2D leads to eq. 27.
APPENDIX E

The time derivative of the relative variance is:

dfa’ _ (9c?/ot) F> — 2FF'a? _1 dadH 2Fd?
ot\F? F* P at F
(1E)

By the use of egs. 19 and 4 in eq 1E the following is derived:
3o’ _ 2(F')y*X
At\F?

KF?
a3
+ (B(1 — XB) In®> X + In X} :|

[B(l —XB)—+(B— 1 ‘BXB) 2%

I32
2P ob _2FP X0k Koy . 0f
FD P KK X B?
2F' ob
F D? (2E)

Elkoshi

Combining terms in eq. 2E leads to eq. 34.

APPENDIX F

By expansion of e™® to an infinite series we have

e a? ol "
1 —e¢ —(!———2—!—4‘5—"‘4‘;!*—"' (IF)

When 0 < a < 1 the above coverges.
According to the theory of infinite series (8), if the series:
a,>0

a; —a ta;—agt+ -

converges by the alternating series test, then
0 < IR, < ayq
where
R, =S -8,

R, being the “remainder”, S being the sum of the infinite series
and S, being the sum of the first n terms.

This theorem can be stated as follows: When a series
converges by the alternating series test, the absolute value of
the error, made in stopping at n terms, is less than the absolute
value of first neglected term.

Therefore, the sign of the sum of an infinite series that
converges by the alternating series test, where la, | < a,, for
every n, is equal to the sign of the first term of the series.

Hence, by eq. 1F:
0<a<l1

l—e*—a<0 for 2F)
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